NEURAL NETWORKS

  


                    NEURAL NETWORKS

In the last chapter we saw how neural networks can learn their weights and biases using the gradient descent algorithm. There was, however, a gap in our explanation: we didn't discuss how to compute the gradient of the cost function. That's quite a gap! In this chapter I'll explain a fast algorithm for computing such gradients, an algorithm known as backpropagation.
The backpropagation algorithm was originally introduced in the 1970s, but its importance wasn't fully appreciated until afamous 1986 paper byDavid Rumelhart,Geoffrey Hinton, andRonald Williams. That paper describes several neural networks where backpropagation works far faster than earlier approaches to learning, making it possible to use neural nets to solve problems which had previously been insoluble. Today, the backpropagation algorithm is the workhorse of learning in neural networks.
This chapter is more mathematically involved than the rest of the book. If you're not crazy about mathematics you may be tempted to skip the chapter, and to treat backpropagation as a black box whose

Comments

Popular Posts